General Physics 25

Charge

concept and properties

  • electric charge is attribute of body. Unlike charges attract, like charges repel.

  • charge is quantized. Any observed charge q turns out to be multiples of a certain elementary charge e.

    e=1.60217733×1019Cq=0,±e,±2e,±3ee = 1.60217733 \times 10^{-19} C \\ q = 0, \pm e, \pm2e,\pm3e \cdots

Notes

  1. Two elementary charged particles inside atoms, proton and electron, make charge quantized.
  2. e is very small and of no sign.
  3. Neutrons and Protons consist of quarks( 13e-\frac{1}{3}e or 23e\frac{2}{3}e).

Applications

Electrostatic paint spraying, Powder coating, Fly-ash precipitation, Nonimpact ink-jet printing and Photocopying.

Coulomb’s Law,1785

The repulsive force between two small spheres charged with same sort of electricity is in the inverse ratio of the squares of the distances between the centers of the spheres.

Fq1q2r2F \propto{\frac{q_1q_2}{r^2}}

The force from 1 acting on 2 is:

F12=kq1q2r122r12^=14πϵ0q1q2r122r12^\vec{F}_{12} = \frac{kq_1q_2}{r_{12}^2}\hat{r_{12}} = \frac{1}{4\pi\epsilon_0}\frac{q_1q_2}{r_{12}^2}\hat{r_{12}}

Units

vector / scalar unit notes
r12r_{12} scalar meter
r12^\hat{r_{12}} vector 1 unit vector pointing from 1 to 2
F12\vec{F_{12}} vector Newton same as r12^\hat{r_{12}}
qq scalar Coulomb signed positive/negative
kk scalar Nm2/C2N\cdot m^2 /C^2 a special constant, k=9×109Nm2/C2k = 9 \times 10^9N\cdot m^2 /C^2
ϵ0\epsilon_0 scalar C2/(Nm2)C^2/(N\cdot m^2) an elementary constant, ϵ0=8.854×1012C2/(Nm2)\epsilon_0 = 8.854 \times 10^{-12}C^2/(N\cdot m^2)

Notes

  1. Coulomb’s Law generally holds only for charged objects whose size are much smaller than the distance between them. i.e.i.e. only for point charges

  2. Assume that F=kq1q2rλF = k\frac{q_1q_2}{r^\lambda}, experiments show that λ=2.01\lambda = 2.01(by Torsion balance) and λ=2±106\lambda = 2 \pm 10^{-6}(by indirect experiment).

  3. Law of gravitation, F=ma\vec{F} = m\vec{a} , defines inertial massmm and determines gravity constantG.
    Coulomb’s law defines k first, then the basic unit of charge is determined. 1C=6×1018e1 C = 6 \times 10^{18}e.

  4. Newton’s law of gravitation could be considered an approximation of theory of relativity, while Coulomb’s law is an exact result (not an approximation from higher laws) and remains valid in quantum limit.

  5. At level of electrons, Electric force is much stronger than gravitational force.

    FelecFgrav=q1q2m1m2kG=4.17×1042\frac{F_{elec}}{F_{grav}} = \frac{q_1q_2}{m_1m_2}\frac{k}{G} = 4.17 \times 10^{42}

    For an electron,

    q=1.6×1019Cme=9.1×1031kgq = 1.6 \times 10^{-19} C\\ m_e = 9.1 \times 10^{-31} kg

Continuous Charge Distribution

Though the charge is quantized in essence, the charge’s distributions are considered continuous in macroscopic EM. For discrete charge distributions, the superpositions of vectors may work. For continuous distributions, we divide the charge into infinitesimal charged elements and each element is regarded as a point charge.

Charge density

  • Linear charge density λ=dqdx\lambda = \frac{\rm d\it{q}}{\rm d\it{x}}
  • Surface charge density σ=dqdA\sigma = \frac{\rm d\it{q}}{\rm d\it{A}}
  • Volume charge density ρ=dqdV\rho = \frac{\rm d\it{q}}{\rm d\it{V}}

dFq0=14πϵ0q0(ρdV)rr3(rr)Fq0=qdFq0\rm d{\it\vec{F}_{q_0}} = \frac{1}{4\pi\epsilon_0}\frac{q_0(\rho\rm d\it V)}{\vert\vec{r} - \vec{r}'\vert^3} (\vec{r} - \vec{r}') \\ \vec{F}_{q_0} = \iiint_{q}\rm d{\it\vec{F}_{q_0}}

Examples

Ring

A ring of radius RR is charged qq uniformly. A point charge q0q_0 is at distance zz from the center of the ring.

λ=q2πR\lambda = \frac{q}{2\pi R}

dq=λ(Rdθ)=qdϕ2π\rm d {\it q} = \lambda (\it R \rm d \theta) = \frac{\it q \rm d \phi}{2\pi}

dF=14πϵ0q0dqz2+R2=18π2ϵ0q0qdϕz2+R2Fxy=0\rm d {\it F} = \frac{1}{4\pi\epsilon_0}\frac{\it q_0\rm d \it q}{\it z^2 \rm + \it R^2} = \frac{1}{8\pi^2\epsilon_0}\frac{\it q_0q \rm d \phi}{\it z^2 \rm + \it R^2}\\ F_{xy} = 0

Fz=02πcosθdF=02π18π2ϵ0zq0qdϕ(z2+R2)32=14πϵ0zq0q(z2+R2)3214πϵ0q0qz2(Rz0)F_z = \int_{0}^{2\pi}{\cos\theta\rm d\it F} = \int_{0}^{2\pi}{\frac{1}{8\pi^2\epsilon_0}\frac{\it zq_0q \rm d \phi}{(\it z^2 \rm + \it R^2)^{\frac{3}{2}}}} = \frac{1}{4\pi\epsilon_0}\frac{\it zq_0q}{(\it z^2 \rm + \it R^2)^{\frac{3}{2}}} \rightarrow \frac{1}{4\pi\epsilon_0}\frac{\it q_0q}{\it z^2}\quad(\frac{R}{z} \rightarrow 0)

In vector form:

F=Fz=14πϵ0zq0q(z2+R2)32k^14πϵ0q0qz2k^(Rz0)\vec{F} = \vec{F}_z = \frac{1}{4\pi\epsilon_0}\frac{\it zq_0q}{(\it z^2 \rm + \it R^2)^{\frac{3}{2}}}\hat{k} \rightarrow \frac{1}{4\pi\epsilon_0}\frac{\it q_0q}{\it z^2}\hat{k}\quad(\frac{R}{z} \rightarrow 0)

Disk

A disk of radius RR is charged qq uniformly. A point charge q0q_0 is at distance zz from the center of the disk.

σ=qπR2\sigma = \frac{q}{\pi R^2}

Divide the disk into infinitesimal charged rings, which has been calculated above.

dq=σ(2πωdω)=2qωdωR2\rm d {\it q} = \sigma (2\pi \omega \rm d \omega) = \frac{2\it q\omega\rm d\omega}{R^2}

In vector form:

F=Fz=14πϵ0zq0q(z2+R2)32k^14πϵ0q0qz2k^(Rz0)\vec{F} = \vec{F}_z = \frac{1}{4\pi\epsilon_0}\frac{\it zq_0q}{(\it z^2 \rm + \it R^2)^{\frac{3}{2}}}\hat{k} \rightarrow \frac{1}{4\pi\epsilon_0}\frac{\it q_0q}{\it z^2}\hat{k}\quad(\frac{R}{z} \rightarrow 0)

dF=14πϵ0zq0dq(z2+ω2)32k^=12πϵ0zq0qωdωR2(z2+ω2)32k^\rm d {\it\vec{F}} = \frac{1}{4\pi\epsilon_0}\frac{\it zq_0\rm d \it q}{(\it z^2 \rm + \it \omega^2)^{\frac{3}{2}}}\hat{k} = \frac{1}{2\pi\epsilon_0}\frac{\it zq_0q\omega\rm d \omega}{\it R^2(\it z^2 \rm + \omega^2)^{\frac{3}{2}}}\hat{k}

F=0RdF=0Rzq0q4πϵ0R22ωdω(z2+ω2)32k^=q0q2πϵ0R2(1z z2+R2)k^=q0σ2ϵ0(1z z2+R2)k^\vec{F} = \int_{0}^{R}{\rm d\it \vec{F}} = \int_{0}^{R}{\frac{\it zq_0q}{4\pi\epsilon_0\it R^2}\frac{2\omega\rm d \omega}{(\it z^2 \rm + \omega^2)^{\frac{3}{2}}}}\hat{k} = \frac{q_0q}{2\pi\epsilon_0\it R^2}(1 - \frac{z}{\sqrt{\ z^2 + R^2}})\hat{k} = \frac{q_0\sigma}{2\epsilon_0}(1 - \frac{z}{\sqrt{\ z^2 + R^2}})\hat{k}

Using (1+x)α1+αx(1+x)^\alpha \rightarrow 1+\alpha x​ when xx​ gets close to 00​,

F14πϵ0q0qz2(Rz0)\vec{F} \rightarrow \frac{1}{4\pi\epsilon_0}\frac{\it q_0q}{\it z^2}\quad(\frac{R}{z} \rightarrow 0)

Charge Conservation

In any physical process happened in a closed system, the algebraic sum of the total charges remains invariant.

Vecs and Scals

Notation

Vectors are specified by magnitude(length) and direction, and written like F,v,r^\vec{F},\vec{v},\hat{r}.
The magnitude is a scalar quantity, F=F\vert\vec{F}\vert = F .
The unit vector is denoted by ^, indicating only a direction (it has no units!). r^=rr\hat{r} = \frac{\vec{r}}{\vert \vec{r}\vert}

Composition: Vectors can be composited into x,yx,y and zz components. F=Fxx^+Fyy^+Fzz^\vec{F} = F_x\hat{x} + F_y\hat{y} + F_z\hat{z} .

Superposition

F=Fi\vec{F} = \sum{\vec{F_i}}

Conductors, Insulators …

Once charged, the charges
Insulators Not free to move (averagely 1e/cm3\leq 1e/cm^3) Glass, Plastic, Dry wood
Semiconductors (averagely 10101012e/cm310^{10} \sim 10^{12}e/cm^3) Silicon, Germanium
Conductors All free to move ((averagely $ 10^{23}e/cm^3$) Aluminum, Copper, Iron, Silver
Superconductors R = 0,B = 0 under some pressure and temperature conditions

General Physics 25
http://example.com/2023/01/26/GeneralPhysics-25/
Author
Tekhne Chen
Posted on
January 26, 2023
Licensed under