CN C4 Spiking Neuron Models

Spike Train, 脉冲序列

Spike, 脉冲

神经元的输出信号由多个短促的电脉冲(Electric Pulse)构成。

  • 电脉冲:动作电位(Action Potential)或脉冲(Spike)。

一个神经元的AP具有相似的形式:

AU=100 mVA_U=100\ mV

ΔT=12 ms\Delta T=1-2\ \rm ms

脉冲的形式不包含信息,脉冲的数量(number)和脉冲时刻(timing)包含信息。

Spike Train, 脉冲序列

脉冲是神经元信息传递的基本单元

脉冲序列(Spike Train):一个神经元发放的一系列脉冲

  • 脉冲序列中的任意脉冲之间都有一定的时间间隔
  • 不应期(Refractory Period):两个脉冲之间的最短间隔。在不应期内接收到信号,神经元很难或不能发放新的脉冲

数学描述:神经动力学

Si(t)=fδ(tti(f))S_i(t) = \sum_{f}{\delta(t - t _i^{(f)})}

Where ff is the Dirac function:

Delta Function

The delta function is a generalized function that can be defined as the limit of a class of delta sequences.

The delta function, sometimes called Dirac’s delta function or the impulse symbol, takes the feature:

  • x0,δ(x)=0\forall x \ne 0,\delta(x) = 0
  • δ(x)dx=1\int_{-\infty}^{\infty}\delta(x){\rm d} x = 1

Matlab Fundamentals

Basic arithmetic and function

arithmetic op example ans
/ 22 / 11 2
^ 2^4 16
e 12e-3 0.0120
sin sin(pi/2) 1
exp exp(1) 2.7183
log log(2.7183) 1.0000
round round(1.6) 2
abs abs(-8) 8

Matrix and Array

1
2
3
4
5
a = [1 2 3;4 5 6]             
b = zeros(2)
c = a(:,1)
d = rand(2,3)
index = find(a(:,1)>2) # index = 2

a=[123456]a = \left[\begin{array}{ccc}1& 2& 3 \\4 &5& 6\end{array}\right]

b=[0000]b = \left[\begin{array}{cc}0& 0\\0 &0\end{array}\right]

c=[14]c = \left[\begin{array}{c}1 \\4\end{array}\right]

d=[0.40570.67290.71430.88900.20410.8486]d = \left[\begin{array}{ccc}0.4057 &0.6729& 0.7143\\ 0.8890& 0.2041& 0.8486\end{array}\right]

Plot

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
figure; 
timeWindow = 100;
neuronNum = 4;
pixel = rand(1, neuronNum);
spikesNum = floor(pixel*timeWindow);

hold on
colors = ['r', 'g', 'b', 'k']
for i=1:neuronNum
spikeTrains = floor(rand(1,spikesNum(i))*timeWindow);
for j=1:length(spikeTrains)
line([spikeTrains(j) spikeTrains(j)], [0 1]+i-1, 'color', colors(mod(i,4)+1))
end
end
hold off

xlabel('Time (ms)');
ylabel('Neuron No');
ylim([0 neuronNum+1])
set(gca,'ytick',0:1:neuronNum+1)

conclusion:

  • figure
  • line
  • plot
  • hold on
  • xlabel
  • ylabel
  • ylim
  • set

Modeling neurons

Neurons modeling is to abstract a computable mathmetical model, neuron model, from biological neurons.

RECALL Membrane potential is a difference of electrical potential across the membrane, which is the fundaments of the ability of information processing of neurons.

Idealized neurons

  • Dendrites as Input component, receives signals and produces graded local signals.

  • Soma(胞体) as center process unit, performs the important nonlinear processing.

  • Axon as Output component, propagates signals to other neurons.

McCulloch-Pitts Neuron Model

  • Two neurons connect through axon-cell body;
  • One neuron provides inputs to the other through the connection;
  • A certain amount of inputs is needed for a neuron to fire.
  • Fire/not fire a spike, no half spikes or in-between spikes
  • Perform logic calculation.

g(x1,x2,,xn)=g(x)=i=1nxig(x_1,x_2,\cdots,x_n) = g(\vec{x}) = \sum_{i = 1}^{n}x_i

y=f(g(x))={1, g(x)θ0, otherwisey = f(g(x)) = \begin{cases}1,\ g(x) \ge \theta\\0,\ otherwise\end{cases}

Simplified Neuron Model

Synapse is the connection component of axon-dendrite or axon-soma, which is the key structure of signal propagates.

Complex Cell (多室神经元)

LNP model

  • L, Linear Filter, 线性滤波器: 瞬时发放速率如何响应输入的电流脉冲
  • N, Nonlinearity: 滤波器输出的非线性(Nonlinearity)组合
  • P, Poisson Spike Generator, 泊松脉冲产生器

Nernst potential, 内伦斯特电位

细胞膜是良好的绝缘体,细胞内外浓度分别为n1,n2n_1, n_2, 电位分别为u(x1),u(x2)u(x_1), u(x_2)

n1n2=exp[qu(x1)qu(x2)kT]=exp[qΔukT]\frac{n_1}{n_2} = \exp[-\frac{qu(x_1)-qu(x_2)}{kT}] = \exp[-\frac{q\Delta u}{kT}]

Δu=kTqlnn1n2=kTqlnn2n1\Delta u = -\frac{kT}{q}\ln\frac{n_1}{n_2} = \frac{kT}{q}\ln\frac{n_2}{n_1}

Neuronal Dynamics

Leaky Integrate-and-Fire Model,LIF

与HH模型的区别在于LIF神经元把所有跨膜电阻成分看做一个整体, 并假设它是不变的,这样就将模型大大化简了。

τmdudt=RI(t)(u(t)urest)\tau_m\frac{\rm d \it u}{\rm d \it t} = RI(t) - (u(t) - u_{rest})

电流守恒:

I(t)=IR+ICI(t) = I_R + I_C

其中电阻电流IRI_R

IR=uRR=u(t)urestRI_R = \frac{u_R}{R} = \frac{u(t) - u_{rest}}{R}

其中uR,u(t),urestu_R,u(t),u_{rest}分别是穿过电阻的电压,tt时刻膜电压和静息电压。

ICI_C是对电容CC充电的电流,

IC=dqdt=dCudt=CdudtI_C = \frac{\rm d \it q}{\rm d \it t} = \frac{\rm d \it Cu}{\rm d \it t} = C\frac{\rm d \it u}{\rm d \it t}

综上可有

I(t)=u(t)urestR+CdudtI(t) =\frac{u(t) - u_{rest}}{R} + C\frac{\rm d \it u}{\rm d \it t}

形式变换有

RI(t)=u(t)urest+RCdudtRI(t) =u(t) - u_{rest} + RC\frac{\rm d \it u}{\rm d \it t}

τm=RC\tau_m = RC

τmdudt=RI(t)(u(t)urest)\tau_m\frac{\rm d \it u}{\rm d \it t} = RI(t) - (u(t) - u_{rest})

Constant Current Input

假定输入电流为常数II,即t,I(t)=I\forall t,I(t) = I

τmdudt=RI(u(t)urest)dudt=u(t)τm+RIτm+urestτm\begin{align} \tau_m\frac{\rm d \it u}{\rm d \it t} = RI - (u(t) - u_{rest})\\ \frac{\rm d \it u}{\rm d \it t} = - \frac{u(t)}{\tau_m} + \frac{RI}{\tau_m} + \frac{u_{rest}}{\tau_m} \end{align}

uτm+RIτm+urestτm=0- \frac{u}{\tau_m} + \frac{RI}{\tau_m} + \frac{u_{rest}}{\tau_m} = 0,则 u=urest+RIu = u_{rest} + RI为一个解。

uτm+RIτm+urestτm0- \frac{u}{\tau_m} + \frac{RI}{\tau_m} + \frac{u_{rest}}{\tau_m} \ne 0​,形式变换有

du(uRIurest)=dtτm\frac{\rm d \it u}{(u - RI - u_{rest})} = - \frac{\rm d\it t}{\tau_m}

左右两侧同时不定积分有

du(uRIurest)(dtτm)=0ln(uRIurest)+tτm+c=0u(t)=cetτm+RI+urest\begin{align} \int\frac{\rm d \it u}{(u - RI - u_{rest})} - \int(- \frac{\rm d\it t}{\tau_m}) = 0\\ \ln(u - RI - u_{rest}) + \frac{t}{\tau_m} + c = 0\\ u(t) = c'e^{-\frac{t}{\tau_m}} + RI + u_{rest} \end{align}

c,cc, c' is constant.

t=0t = 0时,u(0)=c+RI+urestu(0) = c' + RI + u_{rest},故 c=u(0)RIurestc' = u(0) - RI - u_{rest}

u(t)=(u(0)RIurest)etτm+RI+urestu(t) = (u(0) - RI - u_{rest})e^{-\frac{t}{\tau_m}} + RI + u_{rest}

假设u(0)=urest=0u(0) = u_{rest} = 0

u(t)=RI(1etτm)=RI(1etRC)u(t) = RI(1-e^{-\frac{t}{\tau_m}}) = RI(1-e^{-\frac{t}{RC}})

The time period

T=τmlnRIRIVth+ΔabsT = \tau_m \ln\frac{RI}{RI - V_{th}} + \Delta_{abs}

General time-varying Current Input

给定

u(t0)=urestu(t_0) = u_{rest}

u(t)=urestexp(tt0τm)+Rτm0tt0exp(sτm)I(ts)dsu(t) = u_{rest}\exp(-\frac{t-t_0}{\tau_m}) + \frac{R}{\tau_m}\int_0^{t - t_0}\exp{(-\frac{s}{\tau_m})I(t - s)\rm d\it s}

cycle input current

Afferent Inputs

postsynaptic potential, PSP, 突触后电位: ;突触后神经元对突触前AP的响应。递质的释放依靠突触前神经去极化和Ca+进入突触前末梢,递质释放后通过突触间隙cleft 扩散到突触后膜,并与后膜上的特殊受体结合,改变后膜对离子的通透性(打开离子通道Ion Channel),使后膜电位发生变化。

  • 兴奋型: EPSP, excitatory postsynaptic potential
  • 抑制型:IPSP, inhibitory postsynaptic potential

Synaptic Transmission

  • Chemical Synapse:参照PSP的形成过程,电信号转变为化学信号转变为电信号。
  • Electrical Synapse:神经元之间通过特定膜蛋白直接进行电连接,可能和神经元间的的同步synchronization相关。

突触和脉冲

  • 空间位置与作用:不同空间位置突触作用不同;
  • 空间位置与影响: 远端突触的影响要小于直接连接到胞体的突触的影响;
  • 计算行为:饱和、加、分流抑制。

Computational Model

PSP

ui(t)urest=:ϵij(t)u_i(t) - u_{rest} =: \epsilon_{ij}(t)

  • EPSP: ϵij(t)>0\epsilon_{ij}(t) > 0
  • IPSP: ϵij(t)0\epsilon_{ij}(t) \le 0

AP

ui(t)=jfϵij(ttj(f))+urestu_i(t) = \sum_j\sum_f\epsilon_{ij}(t-t_j^{(f)}) + u_{rest}

tj(f)t_j^{(f)} is the moment of neuron jj firing spike.

Firing threshold

If ui(t)u_i(t) reaches threshold vv from below, neuron 𝑖𝑖 fires a spike.

Nonlinear Neuroal Dynamics

  • hyperpolarization, 超极化:神经元发放一个AP后,膜电压并不是直接降低到静息电位 ,而是降到一个更低的值。
  • 促使神经元发放的膜电压通常是大于静息电位20-30mV,需要大量的 突触前脉冲在短时间内到达(20-50 spikes)。

Spike Response Model, SRM

ui(t)=η(tt^i)+jfϵij(ttj(f))+urestu_i(t) = \eta(t - \hat{t}_i) + \sum_j\sum_f\epsilon_{ij}(t-t_j^{(f)}) + u_{rest}

η(tti(f))={1Δt, 0<tti(f)<Δtη0exp(tti(f)τ), Δt<tti(f)\eta(t - t_i^{(f)}) = \begin{cases}\frac{1}{\Delta t},\ 0<t - t_i^{(f)} < \Delta t\\ -\eta_0\exp(-\frac{t - t_i^{(f)}}{\tau}),\ \Delta t < t - t_i^{(f)} \end{cases}


CN C4 Spiking Neuron Models
http://example.com/2023/03/28/CN-04/
Author
Tekhne Chen
Posted on
March 28, 2023
Licensed under