Spike Train, 脉冲序列
Spike, 脉冲
神经元的输出信号由多个短促的电脉冲(Electric Pulse )构成。
电脉冲:动作电位(Action Potential )或脉冲(Spike )。
一个神经元的AP
具有相似的形式:
A U = 100 m V A_U=100\ mV A U = 100 mV
Δ T = 1 − 2 m s \Delta T=1-2\ \rm ms Δ T = 1 − 2 ms 。
脉冲的形式不包含信息,脉冲的数量(number )和脉冲时刻(timing )包含信息。
Spike Train, 脉冲序列
脉冲是神经元信息传递的基本单元 。
脉冲序列(Spike Train ):一个神经元 发放的一系列脉冲 。
脉冲序列中的任意 脉冲之间都有一定的时间间隔 。
不应期(Refractory Period ):两个脉冲之间的最短间隔 。在不应期内接收到信号,神经元很难或不能发放新的脉冲 。
数学描述:神经动力学
S i ( t ) = ∑ f δ ( t − t i ( f ) ) S_i(t) = \sum_{f}{\delta(t - t _i^{(f)})}
S i ( t ) = f ∑ δ ( t − t i ( f ) )
Where f f f is the Dirac function :
Delta Function
The delta function is a generalized function that can be defined as the limit of a class of delta sequences .
The delta function , sometimes called Dirac’s delta function or the impulse symbol , takes the feature:
∀ x ≠ 0 , δ ( x ) = 0 \forall x \ne 0,\delta(x) = 0 ∀ x = 0 , δ ( x ) = 0
∫ − ∞ ∞ δ ( x ) d x = 1 \int_{-\infty}^{\infty}\delta(x){\rm d} x = 1 ∫ − ∞ ∞ δ ( x ) d x = 1
Matlab Fundamentals
Basic arithmetic and function
arithmetic op
example
ans
/
22 / 11
2
^
2^4
16
e
12e-3
0.0120
sin
sin(pi/2)
1
exp
exp(1)
2.7183
log
log(2.7183)
1.0000
round
round(1.6)
2
abs
abs(-8)
8
Matrix and Array
1 2 3 4 5 a = [1 2 3 ;4 5 6 ] b = zeros (2 ) c = a(:,1 ) d = rand (2 ,3 ) index = find (a(:,1 )>2 ) # index = 2
a = [ 1 2 3 4 5 6 ] a = \left[\begin{array}{ccc}1& 2& 3 \\4 &5& 6\end{array}\right]
a = [ 1 4 2 5 3 6 ]
b = [ 0 0 0 0 ] b = \left[\begin{array}{cc}0& 0\\0 &0\end{array}\right]
b = [ 0 0 0 0 ]
c = [ 1 4 ] c = \left[\begin{array}{c}1 \\4\end{array}\right]
c = [ 1 4 ]
d = [ 0.4057 0.6729 0.7143 0.8890 0.2041 0.8486 ] d = \left[\begin{array}{ccc}0.4057 &0.6729& 0.7143\\ 0.8890& 0.2041& 0.8486\end{array}\right]
d = [ 0.4057 0.8890 0.6729 0.2041 0.7143 0.8486 ]
Plot
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 figure ; timeWindow = 100 ; neuronNum = 4 ; pixel = rand (1 , neuronNum); spikesNum = floor (pixel*timeWindow); hold on colors = ['r' , 'g' , 'b' , 'k' ] for i =1 :neuronNum spikeTrains = floor (rand (1 ,spikesNum(i ))*timeWindow); for j =1 :length (spikeTrains) line([spikeTrains(j ) spikeTrains(j )], [0 1 ]+i -1 , 'color' , colors(mod (i ,4 )+1 )) end end hold off xlabel('Time (ms)' ); ylabel('Neuron No' ); ylim([0 neuronNum+1 ]) set(gca,'ytick' ,0 :1 :neuronNum+1 )
conclusion :
figure
line
plot
hold on
xlabel
ylabel
ylim
set
Modeling neurons
Neurons modeling is to abstract a computable mathmetical model, neuron model, from biological neurons .
RECALL
Membrane potential is a difference of electrical potential across the membrane, which is the fundaments of the ability of information processing of neurons .
Idealized neurons
Dendrites
as Input component, receives signals and produces graded local signals.
Soma(胞体)
as center process unit, performs the important nonlinear processing.
Axon
as Output component, propagates signals to other neurons.
McCulloch-Pitts Neuron Model
Two neurons connect through axon-cell body ;
One neuron provides inputs to the other through the connection;
A certain amount of inputs is needed for a neuron to fire.
Fire/not fire a spike, no half spikes or in-between spikes
Perform logic calculation .
g ( x 1 , x 2 , ⋯ , x n ) = g ( x ⃗ ) = ∑ i = 1 n x i g(x_1,x_2,\cdots,x_n) = g(\vec{x}) = \sum_{i = 1}^{n}x_i
g ( x 1 , x 2 , ⋯ , x n ) = g ( x ) = i = 1 ∑ n x i
y = f ( g ( x ) ) = { 1 , g ( x ) ≥ θ 0 , o t h e r w i s e y = f(g(x)) = \begin{cases}1,\ g(x) \ge \theta\\0,\ otherwise\end{cases}
y = f ( g ( x )) = { 1 , g ( x ) ≥ θ 0 , o t h er w i se
Simplified Neuron Model
Synapse is the connection component of axon-dendrite or axon-soma, which is the key structure of signal propagates.
Complex Cell (多室神经元)
LNP model
L, Linear Filter , 线性滤波器: 瞬时发放速率如何响应输入的电流脉冲
N, Nonlinearity : 滤波器输出的非线性(Nonlinearity)组合
P, Poisson Spike Generator , 泊松脉冲产生器
Nernst potential, 内伦斯特电位
细胞膜是良好的绝缘体,细胞内外浓度分别为n 1 , n 2 n_1, n_2 n 1 , n 2 , 电位分别为u ( x 1 ) , u ( x 2 ) u(x_1), u(x_2) u ( x 1 ) , u ( x 2 ) 。
n 1 n 2 = exp [ − q u ( x 1 ) − q u ( x 2 ) k T ] = exp [ − q Δ u k T ] \frac{n_1}{n_2} = \exp[-\frac{qu(x_1)-qu(x_2)}{kT}] = \exp[-\frac{q\Delta u}{kT}]
n 2 n 1 = exp [ − k T q u ( x 1 ) − q u ( x 2 ) ] = exp [ − k T q Δ u ]
Δ u = − k T q ln n 1 n 2 = k T q ln n 2 n 1 \Delta u = -\frac{kT}{q}\ln\frac{n_1}{n_2} = \frac{kT}{q}\ln\frac{n_2}{n_1}
Δ u = − q k T ln n 2 n 1 = q k T ln n 1 n 2
Neuronal Dynamics
Leaky Integrate-and-Fire Model,LIF
与HH模型的区别在于LIF神经元把所有跨膜电阻成分看做一个整体, 并假设它是不变的,这样就将模型大大化简了。
τ m d u d t = R I ( t ) − ( u ( t ) − u r e s t ) \tau_m\frac{\rm d \it u}{\rm d \it t} = RI(t) - (u(t) - u_{rest})
τ m d t d u = R I ( t ) − ( u ( t ) − u res t )
电流守恒:
I ( t ) = I R + I C I(t) = I_R + I_C
I ( t ) = I R + I C
其中电阻电流I R I_R I R
I R = u R R = u ( t ) − u r e s t R I_R = \frac{u_R}{R} = \frac{u(t) - u_{rest}}{R}
I R = R u R = R u ( t ) − u res t
其中u R , u ( t ) , u r e s t u_R,u(t),u_{rest} u R , u ( t ) , u res t 分别是穿过电阻的电压,t t t 时刻膜电压和静息电压。
I C I_C I C 是对电容C C C 充电的电流,
I C = d q d t = d C u d t = C d u d t I_C = \frac{\rm d \it q}{\rm d \it t} = \frac{\rm d \it Cu}{\rm d \it t} = C\frac{\rm d \it u}{\rm d \it t}
I C = d t d q = d t d Cu = C d t d u
综上可有
I ( t ) = u ( t ) − u r e s t R + C d u d t I(t) =\frac{u(t) - u_{rest}}{R} + C\frac{\rm d \it u}{\rm d \it t}
I ( t ) = R u ( t ) − u res t + C d t d u
形式变换有
R I ( t ) = u ( t ) − u r e s t + R C d u d t RI(t) =u(t) - u_{rest} + RC\frac{\rm d \it u}{\rm d \it t}
R I ( t ) = u ( t ) − u res t + RC d t d u
令τ m = R C \tau_m = RC τ m = RC ,
τ m d u d t = R I ( t ) − ( u ( t ) − u r e s t ) \tau_m\frac{\rm d \it u}{\rm d \it t} = RI(t) - (u(t) - u_{rest})
τ m d t d u = R I ( t ) − ( u ( t ) − u res t )
假定输入电流为常数I I I ,即∀ t , I ( t ) = I \forall t,I(t) = I ∀ t , I ( t ) = I ,
τ m d u d t = R I − ( u ( t ) − u r e s t ) d u d t = − u ( t ) τ m + R I τ m + u r e s t τ m \begin{align}
\tau_m\frac{\rm d \it u}{\rm d \it t} = RI - (u(t) - u_{rest})\\
\frac{\rm d \it u}{\rm d \it t} = - \frac{u(t)}{\tau_m} + \frac{RI}{\tau_m} + \frac{u_{rest}}{\tau_m}
\end{align}
τ m d t d u = R I − ( u ( t ) − u res t ) d t d u = − τ m u ( t ) + τ m R I + τ m u res t
若 − u τ m + R I τ m + u r e s t τ m = 0 - \frac{u}{\tau_m} + \frac{RI}{\tau_m} + \frac{u_{rest}}{\tau_m} = 0 − τ m u + τ m R I + τ m u res t = 0 ,则 u = u r e s t + R I u = u_{rest} + RI u = u res t + R I 为一个解。
若 − u τ m + R I τ m + u r e s t τ m ≠ 0 - \frac{u}{\tau_m} + \frac{RI}{\tau_m} + \frac{u_{rest}}{\tau_m} \ne 0 − τ m u + τ m R I + τ m u res t = 0 ,形式变换有
d u ( u − R I − u r e s t ) = − d t τ m \frac{\rm d \it u}{(u - RI - u_{rest})} = - \frac{\rm d\it t}{\tau_m}
( u − R I − u res t ) d u = − τ m d t
左右两侧同时不定积分有
∫ d u ( u − R I − u r e s t ) − ∫ ( − d t τ m ) = 0 ln ( u − R I − u r e s t ) + t τ m + c = 0 u ( t ) = c ′ e − t τ m + R I + u r e s t \begin{align}
\int\frac{\rm d \it u}{(u - RI - u_{rest})} - \int(- \frac{\rm d\it t}{\tau_m}) = 0\\
\ln(u - RI - u_{rest}) + \frac{t}{\tau_m} + c = 0\\
u(t) = c'e^{-\frac{t}{\tau_m}} + RI + u_{rest}
\end{align}
∫ ( u − R I − u res t ) d u − ∫ ( − τ m d t ) = 0 ln ( u − R I − u res t ) + τ m t + c = 0 u ( t ) = c ′ e − τ m t + R I + u res t
c , c ′ c, c' c , c ′ is constant.
t = 0 t = 0 t = 0 时,u ( 0 ) = c ′ + R I + u r e s t u(0) = c' + RI + u_{rest} u ( 0 ) = c ′ + R I + u res t ,故 c ′ = u ( 0 ) − R I − u r e s t c' = u(0) - RI - u_{rest} c ′ = u ( 0 ) − R I − u res t ,
u ( t ) = ( u ( 0 ) − R I − u r e s t ) e − t τ m + R I + u r e s t u(t) = (u(0) - RI - u_{rest})e^{-\frac{t}{\tau_m}} + RI + u_{rest}
u ( t ) = ( u ( 0 ) − R I − u res t ) e − τ m t + R I + u res t
假设u ( 0 ) = u r e s t = 0 u(0) = u_{rest} = 0 u ( 0 ) = u res t = 0 ,
u ( t ) = R I ( 1 − e − t τ m ) = R I ( 1 − e − t R C ) u(t) = RI(1-e^{-\frac{t}{\tau_m}}) = RI(1-e^{-\frac{t}{RC}})
u ( t ) = R I ( 1 − e − τ m t ) = R I ( 1 − e − RC t )
The time period
T = τ m ln R I R I − V t h + Δ a b s T = \tau_m \ln\frac{RI}{RI - V_{th}} + \Delta_{abs}
T = τ m ln R I − V t h R I + Δ ab s
给定
u ( t 0 ) = u r e s t u(t_0) = u_{rest}
u ( t 0 ) = u res t
u ( t ) = u r e s t exp ( − t − t 0 τ m ) + R τ m ∫ 0 t − t 0 exp ( − s τ m ) I ( t − s ) d s u(t) = u_{rest}\exp(-\frac{t-t_0}{\tau_m}) + \frac{R}{\tau_m}\int_0^{t - t_0}\exp{(-\frac{s}{\tau_m})I(t - s)\rm d\it s}
u ( t ) = u res t exp ( − τ m t − t 0 ) + τ m R ∫ 0 t − t 0 exp ( − τ m s ) I ( t − s ) d s
postsynaptic potential, PSP , 突触后电位: ;突触后神经元对突触前AP的响应。递质的释放依靠突触前神经去极化和Ca+进入突触前末梢,递质释放后通过突触间隙cleft 扩散到突触后膜,并与后膜上的特殊受体结合,改变后膜对离子的通透性(打开离子通道Ion Channel ),使后膜电位发生变化。
兴奋型: EPSP , excitatory postsynaptic potential
抑制型:IPSP , inhibitory postsynaptic potential
Synaptic Transmission
Chemical Synapse :参照PSP
的形成过程,电信号转变为化学信号转变为电信号。
Electrical Synapse :神经元之间通过特定膜蛋白 直接进行电连接 ,可能和神经元间的的同步synchronization 相关。
突触和脉冲
空间位置与作用:不同空间位置突触作用不同;
空间位置与影响: 远端突触 的影响要小于直接连接到胞体的突触 的影响;
计算行为 :饱和、加、分流抑制。
Computational Model
PSP
u i ( t ) − u r e s t = : ϵ i j ( t ) u_i(t) - u_{rest} =: \epsilon_{ij}(t)
u i ( t ) − u res t =: ϵ ij ( t )
EPSP: ϵ i j ( t ) > 0 \epsilon_{ij}(t) > 0 ϵ ij ( t ) > 0
IPSP: ϵ i j ( t ) ≤ 0 \epsilon_{ij}(t) \le 0 ϵ ij ( t ) ≤ 0
AP
u i ( t ) = ∑ j ∑ f ϵ i j ( t − t j ( f ) ) + u r e s t u_i(t) = \sum_j\sum_f\epsilon_{ij}(t-t_j^{(f)}) + u_{rest}
u i ( t ) = j ∑ f ∑ ϵ ij ( t − t j ( f ) ) + u res t
t j ( f ) t_j^{(f)} t j ( f ) is the moment of neuron j j j firing spike.
Firing threshold
If u i ( t ) u_i(t) u i ( t ) reaches threshold v v v from below, neuron 𝑖 𝑖 i fires a spike.
Nonlinear Neuroal Dynamics
hyperpolarization , 超极化:神经元发放一个AP后,膜电压并不是直接降低到静息电位 ,而是降到一个更低的值。促使神经元发放的膜电压通常是大于静息电位20-30mV,需要大量的 突触前脉冲在短时间内到达(20-50 spikes)。
Spike Response Model, SRM
u i ( t ) = η ( t − t ^ i ) + ∑ j ∑ f ϵ i j ( t − t j ( f ) ) + u r e s t u_i(t) = \eta(t - \hat{t}_i) + \sum_j\sum_f\epsilon_{ij}(t-t_j^{(f)}) + u_{rest}
u i ( t ) = η ( t − t ^ i ) + j ∑ f ∑ ϵ ij ( t − t j ( f ) ) + u res t
η ( t − t i ( f ) ) = { 1 Δ t , 0 < t − t i ( f ) < Δ t − η 0 exp ( − t − t i ( f ) τ ) , Δ t < t − t i ( f ) \eta(t - t_i^{(f)}) = \begin{cases}\frac{1}{\Delta t},\ 0<t - t_i^{(f)} < \Delta t\\ -\eta_0\exp(-\frac{t - t_i^{(f)}}{\tau}),\ \Delta t < t - t_i^{(f)} \end{cases}
η ( t − t i ( f ) ) = { Δ t 1 , 0 < t − t i ( f ) < Δ t − η 0 exp ( − τ t − t i ( f ) ) , Δ t < t − t i ( f )