Field, and Electric Field
A field is something that can be defined anywhere in space. Fields represent physical quantities.
scalar fields like T ( x , y ) T(x,y) T ( x , y )
vector fields like V ⃗ ( x , y , z ; t ) \vec{V}(x,y,z;t) V ( x , y , z ; t ) and gravitation field
g ⃗ \vec{g} g
Physical fields, considered continuous and well-behaved, obey a simple rule and are created by sources. The rule and the sources decide the field.
gravitation field
g ⃗ \vec{g} g is measured using a test body of small mass m 0 m_0 m 0 ( does not disturb the mass distribution!). Similarly the electric field is measured by a small test charge q 0 q_0 q 0 .
gravitation field
electric field
g ⃗ = lim m 0 → 0 F ⃗ m 0 \vec{g} = \lim_{m_0\rightarrow0}\frac{\vec{F}}{m_0} g = lim m 0 → 0 m 0 F
E ⃗ = lim q 0 → 0 F ⃗ q 0 \vec{E} = \lim_{q_0\rightarrow0}\frac{\vec{F}}{q_0} E = lim q 0 → 0 q 0 F
g ⃗ ( r ⃗ ) = − G M r 2 r ^ \vec{g}(\vec{r}) = -G\frac{M}{r^2}\hat{r} g ( r ) = − G r 2 M r ^
Point charge and groups
F ⃗ = 1 4 π ϵ 0 q 0 q r 2 r ^ \vec{F} = \frac{1}{4\pi\epsilon_0}\frac{q_0q}{r^2}\hat{r}
F = 4 π ϵ 0 1 r 2 q 0 q r ^
E ⃗ = 1 4 π ϵ 0 q r 2 r ^ \vec{E} = \frac{1}{4\pi\epsilon_0}\frac{q}{r^2}\hat{r}
E = 4 π ϵ 0 1 r 2 q r ^
Law of Superposition still works for fields( they’re vectors! ).
E ⃗ = ∑ E ⃗ i = 1 4 π ϵ 0 ∑ q r i 2 r ^ i \vec{E} = \sum \vec{E}_i = \frac{1}{4\pi\epsilon_0}\sum \frac{q}{r_i^2}\hat{r}_i
E = ∑ E i = 4 π ϵ 0 1 ∑ r i 2 q r ^ i
Example: Dipole
Here Q Q Q has no sign, just to indicate the magnitude of the charge. Calculate a point ( x , 0 ) (x,0) ( x , 0 ) along x x x axis, E x ( x , 0 ) = 0 E_x(x,0) = 0 E x ( x , 0 ) = 0 for the symmetry.
E y ( x , 0 ) = − 2 4 π ϵ 0 Q r 2 sin θ = − 1 4 π ϵ 0 2 Q a r 3 E_y(x,0) = -\frac{2}{4\pi\epsilon_0}\frac{Q}{r^2}\sin\theta = -\frac{1}{4\pi\epsilon_0}\frac{2Qa}{r^3}
E y ( x , 0 ) = − 4 π ϵ 0 2 r 2 Q sin θ = − 4 π ϵ 0 1 r 3 2 Q a
where r = a 2 + x 2 r = \sqrt{a^2 + x^2} r = a 2 + x 2 . By Taylor Expansion at a x = 0 \frac{a}{x} = 0 x a = 0 ,
E y ( x , 0 ) = − 1 4 π ϵ 0 2 Q a ( a 2 + x 2 ) 3 2 = − p 4 π ϵ 0 x 3 ( 1 + a 2 x 2 ) − 3 2 = − p 4 π ϵ 0 x 3 ∑ n = 0 ∞ ( 2 n + 1 ) ! ! n ! ( − 2 ) 2 n + 1 ( a x ) 2 n E_y(x,0) = -\frac{1}{4\pi\epsilon_0}\frac{2Qa}{(a^2 + x^2)^{\frac{3}{2}}} = \frac{-p}{4\pi\epsilon_0x^3}(1+\frac{a^2}{x^2})^{-\frac{3}{2}} = \frac{-p}{4\pi\epsilon_0x^3}\sum_{n = 0}^{\infty}\frac{(2n+1)!!}{n!(-2)^{2n+1}}(\frac{a}{x})^{2n}
E y ( x , 0 ) = − 4 π ϵ 0 1 ( a 2 + x 2 ) 2 3 2 Q a = 4 π ϵ 0 x 3 − p ( 1 + x 2 a 2 ) − 2 3 = 4 π ϵ 0 x 3 − p n = 0 ∑ ∞ n ! ( − 2 ) 2 n + 1 ( 2 n + 1 )!! ( x a ) 2 n
E y ( x , 0 ) → − 2 1 4 π ϵ 0 Q a x 3 ( a x → 0 ) E_y(x,0) \rightarrow -2\frac{1}{4\pi\epsilon_0}\frac{Qa}{x^3}(\frac{a}{x} \rightarrow 0)
E y ( x , 0 ) → − 2 4 π ϵ 0 1 x 3 Q a ( x a → 0 )
The conclusions could be promoted to x z xz x z plane. E ∝ 1 r 3 E \propto \frac{1}{r^3} E ∝ r 3 1 .
Calculate a point ( 0 , y ) (0,y) ( 0 , y ) along y y y axis, E x ( 0 , y ) = 0 E_x(0,y) = 0 E x ( 0 , y ) = 0 .
E y ( 0 , y ) = { 1 4 π ϵ 0 ( Q ( a − y ) 2 + − Q ( − a − y ) 2 ) = Q 4 π ϵ 0 4 a y y 4 ( a 2 y 2 − 1 ) 2 , ( ∣ y ∣ ≥ a ) 1 4 π ϵ 0 ( − Q ( a − y ) 2 + − Q ( − a − y ) 2 ) = − Q 4 π ϵ 0 2 ( a 2 + y 2 ) ( a 2 − y 2 ) 2 , ( ∣ y ∣ ≤ a ) E_y(0,y) = \begin{cases}\frac{1}{4\pi\epsilon_0}(\frac{Q}{(a - y)^2} + \frac{-Q}{(-a-y)^2}) = \frac{Q}{4\pi\epsilon_0}\frac{4ay}{y^4(\frac{a^2}{y^2}-1)^2},\quad(\vert y\vert \geq a)\\
\frac{1}{4\pi\epsilon_0}(-\frac{Q}{(a - y)^2} + \frac{-Q}{(-a-y)^2}) = -\frac{Q}{4\pi\epsilon_0}\frac{2(a^2 + y^2)}{(a^2 - y^2)^2},\quad(\vert y\vert \leq a)
\end{cases}
E y ( 0 , y ) = ⎩ ⎨ ⎧ 4 π ϵ 0 1 ( ( a − y ) 2 Q + ( − a − y ) 2 − Q ) = 4 π ϵ 0 Q y 4 ( y 2 a 2 − 1 ) 2 4 a y , ( ∣ y ∣ ≥ a ) 4 π ϵ 0 1 ( − ( a − y ) 2 Q + ( − a − y ) 2 − Q ) = − 4 π ϵ 0 Q ( a 2 − y 2 ) 2 2 ( a 2 + y 2 ) , ( ∣ y ∣ ≤ a )
E y ( 0 , y ) = Q 4 π ϵ 0 4 a y y 4 ( a 2 y 2 − 1 ) 2 → 4 1 4 π ϵ 0 Q a y 3 , ( a y → 0 ) E_y(0,y) = \frac{Q}{4\pi\epsilon_0}\frac{4ay}{y^4(\frac{a^2}{y^2}-1)^2} \rightarrow 4\frac{1}{4\pi\epsilon_0}\frac{Qa}{y^3},(\frac{a}{y} \rightarrow 0)
E y ( 0 , y ) = 4 π ϵ 0 Q y 4 ( y 2 a 2 − 1 ) 2 4 a y → 4 4 π ϵ 0 1 y 3 Q a , ( y a → 0 )
The electric field magnitude is determined by Q a Qa Q a at a given point. Thus Dipole Vector
p ⃗ \vec{p} p is introduced.
p = 2 Q a = Q l p = 2Qa = Ql
p = 2 Q a = Ql
points from the negative charge to the positive charge.
Continuous distribution
E ⃗ = 1 4 π ϵ 0 ∫ d q r 2 r ^ = 1 4 π ϵ 0 ∫ ρ ( r ) d V r 2 r ^ \vec{E} = \frac{1}{4\pi\epsilon_0}\int \frac{\rm d\it q}{r^2}\hat{r} = \frac{1}{4\pi\epsilon_0}\int \frac{\rho(r)\rm d\it V}{r^2}\hat{r}
E = 4 π ϵ 0 1 ∫ r 2 d q r ^ = 4 π ϵ 0 1 ∫ r 2 ρ ( r ) d V r ^
Infinite line of charge
A infinite line is of uniform linear charge density λ \lambda λ . Calculate the electric field a point at distance r r r from the line.
\rm d {\it q} = \lambda d{\it x}, \quad \rm d {\it x} = d ({\it r}\tan\theta) = {\it \frac{r}{\cos^\rm 2\theta}}d\theta
d{\it E} = \frac{1}{4\pi\epsilon_0}\frac{\rm d\it q}{\it r'^2} = \frac{1}{4\pi\epsilon_0}\frac{r\lambda\rm d\theta}{ (\cos\theta r')^\rm2} = \frac{1}{4\pi\epsilon_0}\frac{\lambda\rm d\theta}{\it r}
E x = ∫ − π 2 π 2 sin θ d E = 0 E_x = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin\theta\rm d{\it E} = 0
E x = ∫ − 2 π 2 π sin θ d E = 0
E y = ∫ − π 2 π 2 cos θ d E = 1 4 π ϵ 0 2 λ r E_y = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos\theta\rm d{\it E} = \frac{1}{4\pi\epsilon_0}\frac{2\lambda}{\it r}
E y = ∫ − 2 π 2 π cos θ d E = 4 π ϵ 0 1 r 2 λ
The conclusions could also be promoted to plane that is vertical to the line. E ∝ 1 r E \propto \frac{1}{r} E ∝ r 1 .
A ring of radius R R R is uniformly charged Q Q Q . Calculate the electric field a point at distance z z z from the center of the ring.
d q = λ d s , d s = d ( R α ) = R d α \rm d {\it q} = \lambda d{\it s}, \quad \rm d {\it s} = d ({\it R}\alpha) = {\it R}d\alpha
d q = λ d s , d s = d ( R α ) = R d α
d E = 1 4 π ϵ 0 d q r 2 = 1 4 π ϵ 0 R λ d α r 2 = 1 4 π ϵ 0 R λ d α R 2 + z 2 {\rm d}{\it E} = \frac{1}{4\pi\epsilon_0}\frac{\rm d\it q}{\it r^2} = \frac{1}{4\pi\epsilon_0}\frac{R\lambda\rm d\alpha}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{R\lambda\rm d\alpha}{R^2 + z^2}
d E = 4 π ϵ 0 1 r 2 d q = 4 π ϵ 0 1 r 2 R λ d α = 4 π ϵ 0 1 R 2 + z 2 R λ d α
By the symmetry of ring, it is easy to calculate that E x = E y = 0 E_x = E_y = 0 E x = E y = 0
E z = ∫ 0 2 π cos θ d E = ∫ 0 2 π 1 4 π ϵ 0 R z λ d α ( R 2 + z 2 ) 3 2 = ( 2 π R λ ) z 4 π ϵ 0 ( R 2 + z 2 ) 3 2 = Q z 4 π ϵ 0 ( R 2 + z 2 ) 3 2 E_z = \int_0^{2\pi}\cos\theta\rm d{\it E} = \int_0^{2\pi}\frac{1}{4\pi\epsilon_0}\frac{\it Rz\lambda\rm d\alpha}{(R^2 + z^2)^{\frac{3}{2}}} = \frac{(2\pi{\it R}\lambda)\it z}{4\pi\epsilon_0(R^2 + z^2)^{\frac{3}{2}}} = \frac{\it Qz}{4\pi\epsilon_0(R^2 + z^2)^{\frac{3}{2}}}
E z = ∫ 0 2 π cos θ d E = ∫ 0 2 π 4 π ϵ 0 1 ( R 2 + z 2 ) 2 3 Rz λ d α = 4 π ϵ 0 ( R 2 + z 2 ) 2 3 ( 2 π R λ ) z = 4 π ϵ 0 ( R 2 + z 2 ) 2 3 Qz
There are two extreme conditions:
E z = { Q z 4 π ϵ 0 R 3 , ( R z → 0 ) 0 , ( z → 0 ) E_z = \begin{cases}\frac{\it Qz}{4\pi\epsilon_0R^3},\quad (\frac{R}{z} \rightarrow 0)\\
\quad 0, \quad\quad (z \rightarrow 0)
\end{cases}
E z = { 4 π ϵ 0 R 3 Qz , ( z R → 0 ) 0 , ( z → 0 )
A disk of radius R R R is uniformly charged Q Q Q . Calculate the electric field a point at distance z z z from the center of the disk. Divide the disk into infinitesimal charged rings, which has been calculated above.
d q = ω d A , d A = 2 π ω σ d ω \rm d {\it q} = \omega\rm d\it A, \quad \rm d {\it A} = 2\pi\omega\sigma\rm d{\omega}
d q = ω d A , d A = 2 πωσ d ω
d E = d E z = z d q 4 π ϵ 0 ( ω 2 + z 2 ) 3 2 = z ω σ d ω 2 ϵ 0 ( ω 2 + z 2 ) 3 2 {\rm d}{\it E} = {\rm d}E_z = \frac{z{\rm d}q}{4\pi\epsilon_0(\omega^2 + z^2)^{\frac{3}{2}}} = \frac{z\omega\sigma{\rm d}\omega}{2\epsilon_0(\omega^2 + z^2)^{\frac{3}{2}}}
d E = d E z = 4 π ϵ 0 ( ω 2 + z 2 ) 2 3 z d q = 2 ϵ 0 ( ω 2 + z 2 ) 2 3 z ωσ d ω
E = E z = ∫ 0 R d E z = ∫ 0 R z ω σ d ω 2 ϵ 0 ( ω 2 + z 2 ) 3 2 = σ 2 ϵ 0 ( 1 − z z 2 + R 2 ) E = E_z = \int_0^{R}{\rm d}E_z = \int_0^{R}\frac{z\omega\sigma{\rm d}\omega}{2\epsilon_0(\omega^2 + z^2)^{\frac{3}{2}}} = \frac{\sigma}{2\epsilon_0}(1 - \frac{z}{\sqrt{z^2 + R^2}})
E = E z = ∫ 0 R d E z = ∫ 0 R 2 ϵ 0 ( ω 2 + z 2 ) 2 3 z ωσ d ω = 2 ϵ 0 σ ( 1 − z 2 + R 2 z )
Which is consistent with the Coulomb’s Force.
E = E z = Q 2 π ϵ 0 R 2 ( 1 − z z 2 + R 2 ) E = E_z = \frac{Q}{2\pi\epsilon_0R^2}(1 - \frac{z}{\sqrt{z^2 + R^2}})
E = E z = 2 π ϵ 0 R 2 Q ( 1 − z 2 + R 2 z )
There are two extreme conditions:
E = { Q 4 π ϵ 0 z 2 , ( R z → 0 ) σ 2 ϵ 0 , ( z R → 0 ) E = \begin{cases}\frac{\it Q}{4\pi\epsilon_0z^2},\quad (\frac{R}{z} \rightarrow 0)\\
\frac{\sigma}{2\epsilon_0}, \quad\quad (\frac{z}{R} \rightarrow 0)
\end{cases}
E = { 4 π ϵ 0 z 2 Q , ( z R → 0 ) 2 ϵ 0 σ , ( R z → 0 )
which gives the electric field magnitudes of point charge and infinite sheet respectively.
Features
Electric field propagates at speed of light.
There’s never a net electric charges inside a conductor. Free charges always move to exactly cancel it out.
Visualization
Field
Vector maps
Field lines
Graphs
direction
direction of vectors
tangent of line
x , y , z x,y,z x , y , z or other coordinate systems
magnitude
length of vectors
local density of lines
E x − x , E y − y , E z − z E_x - x, E_y-y,E_z-z E x − x , E y − y , E z − z ,
Note
Polar coordinate system
{ x = r cos θ y = r sin θ { r = x 2 + y 2 θ = arcsin y x \begin{cases}x = r\cos\theta\\ y= r\sin\theta\end{cases}
\begin{cases}r =\sqrt{x^2 + y^2}\\ \theta= \arcsin\frac{y}{x}\end{cases}
{ x = r cos θ y = r sin θ { r = x 2 + y 2 θ = arcsin x y
Thus Jacob transform is
J = det ( [ cos θ − r sin θ sin θ r cos θ ] ) = r J = \det(\begin{bmatrix}\cos\theta & -r\sin\theta\\ \sin\theta & r\cos\theta
\end{bmatrix}) = r
J = det ( [ cos θ sin θ − r sin θ r cos θ ] ) = r
Similarly we have Spherical coordinate system.
Field lines
Dipole
Two like charges
Conductors
Example
Deflecting electrode system
Milikan oil drop Experiment
A Dipole in E fields
F n e t = 0 , τ n e t = F d sin θ = q E d sin θ = p E sin θ F_{net} = 0, \quad \tau_{net} = Fd\sin\theta = qEd\sin\theta = pE\sin\theta
F n e t = 0 , τ n e t = F d sin θ = qE d sin θ = pE sin θ
Thus for a dipole p ⃗ \vec{p} p ,
τ ⃗ = p ⃗ × E ⃗ \vec{\tau} = \vec{p} \times \vec{E}
τ = p × E
The work done by external field from θ 0 \theta_0 θ 0 to θ \theta θ is
W = ∫ d w = ∫ θ 0 θ τ ⃗ ⋅ d θ ⃗ = ∫ θ 0 θ − p E sin θ d θ = p E ( cos θ − cos θ 0 ) = − Δ U = U 0 − U W = \int {\rm d}w = \int_{\theta_0}^{\theta}\vec{\tau}\cdot{\rm d}\vec{\theta} = \int_{\theta_0}^{\theta}-pE\sin\theta{\rm d}\theta
= pE(\cos\theta - \cos\theta_0) = -\Delta U= U_0 - U
W = ∫ d w = ∫ θ 0 θ τ ⋅ d θ = ∫ θ 0 θ − pE sin θ d θ = pE ( cos θ − cos θ 0 ) = − Δ U = U 0 − U
Hence U ( θ ) = − p E cos θ = − p ⃗ ⋅ E ⃗ U(\theta) = -pE\cos\theta = - \vec{p}\cdot\vec{E} U ( θ ) = − pE cos θ = − p ⋅ E .
Nuclear Model of the Atom
Thomson model
Fig.
Discription
positive charge: distributed more or less uniformly throughout the entire spherical volume of the atom. electrons : imbedded throughout the diffuse spherical of positive charge.
Rutherford atomic model
α \alpha α particles scattering experiment
E = { Q 4 π ϵ 0 r 2 , ( r > R ) Q r 4 π ϵ 0 R 3 , ( r < R ) E = \begin{cases}\frac{Q}{4\pi\epsilon_0r^2},\quad (r > R)\\
\frac{Qr}{4\pi\epsilon_0R^3},\quad (r < R)\end{cases}
E = { 4 π ϵ 0 r 2 Q , ( r > R ) 4 π ϵ 0 R 3 Q r , ( r < R )
To calculate the upper boundary of the deflection,
E m a x = Q 4 π ϵ 0 R 2 = 79 × 1.61 × 1 0 − 19 4 × 3.14 × 8.854 × 1 0 − 12 × 1 0 − 20 = 1.14 × 1 0 13 N / C E_{max} =\frac{Q}{4\pi\epsilon_0R^2} = \frac{79\times1.61\times10^{-19}}{4\times3.14\times8.854\times10^{-12}\times10^{-20}} = 1.14\times10^{13} N/C
E ma x = 4 π ϵ 0 R 2 Q = 4 × 3.14 × 8.854 × 1 0 − 12 × 1 0 − 20 79 × 1.61 × 1 0 − 19 = 1.14 × 1 0 13 N / C
The α \alpha α particles are accelerated to v = 1.70 × 1 0 7 m / s v = 1.70 \times 10^7 m/s v = 1.70 × 1 0 7 m / s .
θ m a x = arctan Δ v v = arctan a Δ t v = arctan 2 E m a x q R m v 2 = 0.02 deg \theta_{max} = \arctan\frac{\Delta v}{v} = \arctan\frac{a\Delta t}{v} = \arctan\frac{2E_{max}qR}{mv^2} = 0.02\deg
θ ma x = arctan v Δ v = arctan v a Δ t = arctan m v 2 2 E ma x qR = 0.02 deg
Rutherford’s model
In the experiment, about 1 1 0 4 \frac{1}{10^4} 1 0 4 1 particles were reversed, which is also the ratio of r n u c l e a r r_{nuclear} r n u c l e a r and r a t o m r_{atom} r a t o m .