General Physics 26

Field, and Electric Field

A field is something that can be defined anywhere in space. Fields represent physical quantities.

  • scalar fields like T(x,y)T(x,y)
  • vector fields like V(x,y,z;t)\vec{V}(x,y,z;t) and gravitation fieldg\vec{g}

Physical fields, considered continuous and well-behaved, obey a simple rule and are created by sources. The rule and the sources decide the field.

gravitation fieldg\vec{g} is measured using a test body of small mass m0m_0( does not disturb the mass distribution!). Similarly the electric field is measured by a small test charge q0q_0.

gravitation field electric field
g=limm00Fm0\vec{g} = \lim_{m_0\rightarrow0}\frac{\vec{F}}{m_0} E=limq00Fq0\vec{E} = \lim_{q_0\rightarrow0}\frac{\vec{F}}{q_0}
g(r)=GMr2r^\vec{g}(\vec{r}) = -G\frac{M}{r^2}\hat{r}

Point charge and groups

F=14πϵ0q0qr2r^\vec{F} = \frac{1}{4\pi\epsilon_0}\frac{q_0q}{r^2}\hat{r}

E=14πϵ0qr2r^\vec{E} = \frac{1}{4\pi\epsilon_0}\frac{q}{r^2}\hat{r}

Law of Superposition still works for fields( they’re vectors! ).

E=Ei=14πϵ0qri2r^i\vec{E} = \sum \vec{E}_i = \frac{1}{4\pi\epsilon_0}\sum \frac{q}{r_i^2}\hat{r}_i

Example: Dipole

Here QQ has no sign, just to indicate the magnitude of the charge. Calculate a point (x,0)(x,0) along xx axis, Ex(x,0)=0E_x(x,0) = 0 for the symmetry.

Ey(x,0)=24πϵ0Qr2sinθ=14πϵ02Qar3E_y(x,0) = -\frac{2}{4\pi\epsilon_0}\frac{Q}{r^2}\sin\theta = -\frac{1}{4\pi\epsilon_0}\frac{2Qa}{r^3}

where r=a2+x2r = \sqrt{a^2 + x^2}. By Taylor Expansion at ax=0\frac{a}{x} = 0,

Ey(x,0)=14πϵ02Qa(a2+x2)32=p4πϵ0x3(1+a2x2)32=p4πϵ0x3n=0(2n+1)!!n!(2)2n+1(ax)2nE_y(x,0) = -\frac{1}{4\pi\epsilon_0}\frac{2Qa}{(a^2 + x^2)^{\frac{3}{2}}} = \frac{-p}{4\pi\epsilon_0x^3}(1+\frac{a^2}{x^2})^{-\frac{3}{2}} = \frac{-p}{4\pi\epsilon_0x^3}\sum_{n = 0}^{\infty}\frac{(2n+1)!!}{n!(-2)^{2n+1}}(\frac{a}{x})^{2n}

Ey(x,0)214πϵ0Qax3(ax0)E_y(x,0) \rightarrow -2\frac{1}{4\pi\epsilon_0}\frac{Qa}{x^3}(\frac{a}{x} \rightarrow 0)

The conclusions could be promoted to xzxz plane. E1r3E \propto \frac{1}{r^3} .

Calculate a point (0,y)(0,y) along yy axis, Ex(0,y)=0E_x(0,y) = 0​.

Ey(0,y)={14πϵ0(Q(ay)2+Q(ay)2)=Q4πϵ04ayy4(a2y21)2,(ya)14πϵ0(Q(ay)2+Q(ay)2)=Q4πϵ02(a2+y2)(a2y2)2,(ya)E_y(0,y) = \begin{cases}\frac{1}{4\pi\epsilon_0}(\frac{Q}{(a - y)^2} + \frac{-Q}{(-a-y)^2}) = \frac{Q}{4\pi\epsilon_0}\frac{4ay}{y^4(\frac{a^2}{y^2}-1)^2},\quad(\vert y\vert \geq a)\\ \frac{1}{4\pi\epsilon_0}(-\frac{Q}{(a - y)^2} + \frac{-Q}{(-a-y)^2}) = -\frac{Q}{4\pi\epsilon_0}\frac{2(a^2 + y^2)}{(a^2 - y^2)^2},\quad(\vert y\vert \leq a) \end{cases}

Ey(0,y)=Q4πϵ04ayy4(a2y21)2414πϵ0Qay3,(ay0)E_y(0,y) = \frac{Q}{4\pi\epsilon_0}\frac{4ay}{y^4(\frac{a^2}{y^2}-1)^2} \rightarrow 4\frac{1}{4\pi\epsilon_0}\frac{Qa}{y^3},(\frac{a}{y} \rightarrow 0)

The electric field magnitude is determined by QaQa​ at a given point. Thus Dipole Vector p\vec{p}​ is introduced.

p=2Qa=Qlp = 2Qa = Ql

points from the negative charge to the positive charge.

Continuous distribution

E=14πϵ0dqr2r^=14πϵ0ρ(r)dVr2r^\vec{E} = \frac{1}{4\pi\epsilon_0}\int \frac{\rm d\it q}{r^2}\hat{r} = \frac{1}{4\pi\epsilon_0}\int \frac{\rho(r)\rm d\it V}{r^2}\hat{r}

Infinite line of charge

A infinite line is of uniform linear charge density λ\lambda . Calculate the electric field a point at distance rr from the line.

\rm d {\it q} = \lambda d{\it x}, \quad \rm d {\it x} = d ({\it r}\tan\theta) = {\it \frac{r}{\cos^\rm 2\theta}}d\theta

d{\it E} = \frac{1}{4\pi\epsilon_0}\frac{\rm d\it q}{\it r'^2} = \frac{1}{4\pi\epsilon_0}\frac{r\lambda\rm d\theta}{ (\cos\theta r')^\rm2} = \frac{1}{4\pi\epsilon_0}\frac{\lambda\rm d\theta}{\it r}

Ex=π2π2sinθdE=0E_x = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin\theta\rm d{\it E} = 0

Ey=π2π2cosθdE=14πϵ02λrE_y = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos\theta\rm d{\it E} = \frac{1}{4\pi\epsilon_0}\frac{2\lambda}{\it r}

The conclusions could also be promoted to plane that is vertical to the line. E1rE \propto \frac{1}{r} .

Uniformly charged Ring

A ring of radius RR is uniformly charged QQ . Calculate the electric field a point at distance zz from the center of the ring.

dq=λds,ds=d(Rα)=Rdα\rm d {\it q} = \lambda d{\it s}, \quad \rm d {\it s} = d ({\it R}\alpha) = {\it R}d\alpha

dE=14πϵ0dqr2=14πϵ0Rλdαr2=14πϵ0RλdαR2+z2{\rm d}{\it E} = \frac{1}{4\pi\epsilon_0}\frac{\rm d\it q}{\it r^2} = \frac{1}{4\pi\epsilon_0}\frac{R\lambda\rm d\alpha}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{R\lambda\rm d\alpha}{R^2 + z^2}

By the symmetry of ring, it is easy to calculate that Ex=Ey=0E_x = E_y = 0

Ez=02πcosθdE=02π14πϵ0Rzλdα(R2+z2)32=(2πRλ)z4πϵ0(R2+z2)32=Qz4πϵ0(R2+z2)32E_z = \int_0^{2\pi}\cos\theta\rm d{\it E} = \int_0^{2\pi}\frac{1}{4\pi\epsilon_0}\frac{\it Rz\lambda\rm d\alpha}{(R^2 + z^2)^{\frac{3}{2}}} = \frac{(2\pi{\it R}\lambda)\it z}{4\pi\epsilon_0(R^2 + z^2)^{\frac{3}{2}}} = \frac{\it Qz}{4\pi\epsilon_0(R^2 + z^2)^{\frac{3}{2}}}

There are two extreme conditions:

Ez={Qz4πϵ0R3,(Rz0)0,(z0)E_z = \begin{cases}\frac{\it Qz}{4\pi\epsilon_0R^3},\quad (\frac{R}{z} \rightarrow 0)\\ \quad 0, \quad\quad (z \rightarrow 0) \end{cases}

Uniformly charged Disk

A disk of radius RR is uniformly charged QQ . Calculate the electric field a point at distance zz from the center of the disk. Divide the disk into infinitesimal charged rings, which has been calculated above.

dq=ωdA,dA=2πωσdω\rm d {\it q} = \omega\rm d\it A, \quad \rm d {\it A} = 2\pi\omega\sigma\rm d{\omega}

dE=dEz=zdq4πϵ0(ω2+z2)32=zωσdω2ϵ0(ω2+z2)32{\rm d}{\it E} = {\rm d}E_z = \frac{z{\rm d}q}{4\pi\epsilon_0(\omega^2 + z^2)^{\frac{3}{2}}} = \frac{z\omega\sigma{\rm d}\omega}{2\epsilon_0(\omega^2 + z^2)^{\frac{3}{2}}}

E=Ez=0RdEz=0Rzωσdω2ϵ0(ω2+z2)32=σ2ϵ0(1zz2+R2)E = E_z = \int_0^{R}{\rm d}E_z = \int_0^{R}\frac{z\omega\sigma{\rm d}\omega}{2\epsilon_0(\omega^2 + z^2)^{\frac{3}{2}}} = \frac{\sigma}{2\epsilon_0}(1 - \frac{z}{\sqrt{z^2 + R^2}})

Which is consistent with the Coulomb’s Force.

E=Ez=Q2πϵ0R2(1zz2+R2)E = E_z = \frac{Q}{2\pi\epsilon_0R^2}(1 - \frac{z}{\sqrt{z^2 + R^2}})

There are two extreme conditions:

E={Q4πϵ0z2,(Rz0)σ2ϵ0,(zR0)E = \begin{cases}\frac{\it Q}{4\pi\epsilon_0z^2},\quad (\frac{R}{z} \rightarrow 0)\\ \frac{\sigma}{2\epsilon_0}, \quad\quad (\frac{z}{R} \rightarrow 0) \end{cases}

which gives the electric field magnitudes of point charge and infinite sheet respectively.

Features

Electric field propagates at speed of light.

There’s never a net electric charges inside a conductor. Free charges always move to exactly cancel it out.

Visualization

Field Vector maps Field lines Graphs
direction direction of vectors tangent of line x,y,zx,y,z or other coordinate systems
magnitude length of vectors local density of lines Exx,Eyy,EzzE_x - x, E_y-y,E_z-z,

Note Polar coordinate system

{x=rcosθy=rsinθ{r=x2+y2θ=arcsinyx\begin{cases}x = r\cos\theta\\ y= r\sin\theta\end{cases} \begin{cases}r =\sqrt{x^2 + y^2}\\ \theta= \arcsin\frac{y}{x}\end{cases}

Thus Jacob transform is

J=det([cosθrsinθsinθrcosθ])=rJ = \det(\begin{bmatrix}\cos\theta & -r\sin\theta\\ \sin\theta & r\cos\theta \end{bmatrix}) = r

Similarly we have Spherical coordinate system.

Field lines

Dipole Two like charges Conductors

Example

Deflecting electrode system

Milikan oil drop Experiment

A Dipole in E fields

Fnet=0,τnet=Fdsinθ=qEdsinθ=pEsinθF_{net} = 0, \quad \tau_{net} = Fd\sin\theta = qEd\sin\theta = pE\sin\theta

Thus for a dipole p\vec{p},

τ=p×E\vec{\tau} = \vec{p} \times \vec{E}

The work done by external field from θ0\theta_0 to θ\theta is

W=dw=θ0θτdθ=θ0θpEsinθdθ=pE(cosθcosθ0)=ΔU=U0UW = \int {\rm d}w = \int_{\theta_0}^{\theta}\vec{\tau}\cdot{\rm d}\vec{\theta} = \int_{\theta_0}^{\theta}-pE\sin\theta{\rm d}\theta = pE(\cos\theta - \cos\theta_0) = -\Delta U= U_0 - U

Hence U(θ)=pEcosθ=pEU(\theta) = -pE\cos\theta = - \vec{p}\cdot\vec{E}.

Nuclear Model of the Atom

Thomson model

Fig. Discription
positive charge: distributed more or less uniformly throughout the entire spherical volume of the atom.
electrons: imbedded throughout the diffuse spherical of positive charge.

Rutherford atomic model

α\alpha particles scattering experiment

E={Q4πϵ0r2,(r>R)Qr4πϵ0R3,(r<R)E = \begin{cases}\frac{Q}{4\pi\epsilon_0r^2},\quad (r > R)\\ \frac{Qr}{4\pi\epsilon_0R^3},\quad (r < R)\end{cases}

To calculate the upper boundary of the deflection,

Emax=Q4πϵ0R2=79×1.61×10194×3.14×8.854×1012×1020=1.14×1013N/CE_{max} =\frac{Q}{4\pi\epsilon_0R^2} = \frac{79\times1.61\times10^{-19}}{4\times3.14\times8.854\times10^{-12}\times10^{-20}} = 1.14\times10^{13} N/C

The α\alpha particles are accelerated to v=1.70×107m/sv = 1.70 \times 10^7 m/s.

θmax=arctanΔvv=arctanaΔtv=arctan2EmaxqRmv2=0.02deg\theta_{max} = \arctan\frac{\Delta v}{v} = \arctan\frac{a\Delta t}{v} = \arctan\frac{2E_{max}qR}{mv^2} = 0.02\deg

Rutherford’s model

In the experiment, about 1104\frac{1}{10^4} particles were reversed, which is also the ratio of rnuclearr_{nuclear} and ratomr_{atom}.


General Physics 26
http://example.com/2023/02/01/GeneralPhysics-26/
Author
Tekhne Chen
Posted on
February 1, 2023
Licensed under